
Article Journal of Educational and Behavioral Statistics

Vol. 00, No. 0, pp. 1–34

DOI: 10.3102/10769986241289399

Article reuse guidelines: sagepub.com/journals-permissions

� 2024 AERA, https://journals.sagepub.com/home/jeb

A Position-Sensitive Mixture Item Response Model

Klint Kanopka

New York University

Benjamin W. Domingue

Stanford University Graduate School of Education

Standard item response theory (IRT) models are ill-equipped for when the

probability of a correct response depends on the location in the test where an

item is encountered—a phenomenon we refer to as position effects. Unmodeled

position effects complicate comparing respondents taking the same test. We pro-

pose a position-sensitive IRT model that is a mixture of two item response

functions, capturing the difference in response probability when the item is

encountered early versus late in the test. The mixing proportion depends on item

location and latent person-level characteristics, separating person and item

contributions to position effects. We present simulation studies outlining various

features of model performance and end with an application to a large-scale

admissions test with observed position effects.
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In typical item response theory (IRT) applications (e.g., the standard one-

parameter logistic [1PL], two-parameter logistic [2PL], and three-parameter

logistic [3PL]), two core assumptions make estimation possible. First, respon-

dent abilities and item parameters are stable over the course of a single test.

Second, item parameters do not vary from person to person. While the differen-

tial item functioning literature focuses on addressing between group bias in item

parameters (Camilli et al., 1994), standard IRT models are ill-equipped for sce-

narios wherein the probability of a correct response exhibits a dependence on

the location in the test where an item is encountered—a phenomenon that we

broadly refer to as position effects. In situations where items do not change

position between respondents, position effects are not a concern, as there is no

variation in item position to induce differences in item behavior for different

respondents. This can be a scenario where a test consists of only a single form

or the items shared between forms appear in the same location. This breaks

down when tests use multiple forms that share items or with the use of computer

adaptive testing (CAT) designs where items are selected from a bank on the fly.

Unmodeled position effects make observed performance contingent upon the
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specific test form a respondent is exposed to, inducing bias in individual ability

estimates. This introduces a potential liability in our attempt to measure ability,

directly compare students taking the same test, and make consequential infer-

ences from test scores.

Position effects are, by no means, a new concern. While Zeller et al. (2017)

speculate that position effects can be attributed to ordering items by increasing

difficulty, others have found that item parameter estimates are not always stable

across item positions (Leary & Dorans, 1982; Meyers et al., 2008). Kingston

and Dorans (1984) also observe a dependence of estimated item parameters on

item position in GRE items. Their recommendation—based on the assumption

that observed position effects are due to practice effects or fatigue—is for more

flexible models with parameters that incorporate item familiarity or position.

Debeer and Janssen (2013) present a framework by which IRT models can begin

to account for position effects. An additional complication, noted by Weirich

et al. (2017), is that item-induced position effects also interact with individual

effort during a test, implying some change in response behavior. Speaking to

changes in response behavior, Domingue et al. (2021) observe a change in the

relationship between an individual’s response speed and response accuracy over

the course of the large computer adaptive test that persists when controlling for

the effects of specific items. Both of these point to the idea that position effects

are not a phenomenon localized entirely within items or persons, despite much

of the previous attempts at modeling position effects treating them as such.

Previous item-focused modeling work has attempted to address this through

the use of more flexible item response models, including the linear logistic test

model (Hohensinn et al., 2008) and explanatory item response models (De

Boeck, 2004). The tacit assumption in these approaches, however, is that posi-

tion effects are born from an interaction between an item and its position, and

all respondents experience the same degree of parameter displacement. While

this approach preserves the assumption that individual ability is stable over the

course of a single test, it runs contrary to the idea that individuals may vary in

their willingness and ability to persist in test-taking and provide consistent

effort, as noted by Feather (1962). As each different test form is both a sample

and permutation of possible items, the presence of individual differences com-

plicates the counterfactual reasoning that underlies the equating procedure

(Tucker-Drob, 2011).

In parallel to the research on modeling item position effects, a separate line

of work allows for modeling between-person variability in position effects

(Albano, 2013; Trendtel & Robitzsch, 2018; Weirich et al., 2014). These

models impose the assumption that individual differences in position effects are

linear functions of item position. Another approach is to treat person ability as

dynamic and model it over time (Shanker Tripathi & Domingue, 2019), but the

data burden at each time point is more suited to modeling within-person ability
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changes across multiple tests as opposed to ability changes within a single test.

A more tractable model estimates a person-specific ability decay, which is com-

putationally similar to the explanatory IRT approach suggested above (De

Boeck, 2004). There are two trade-offs with the general person-side approach:

First, it assumes that position effects are uniform in the same direction, that is

to say, that items all get harder or easier as the test progresses. Second, it

implies that the magnitude of a position effect does not depend on features of

the item (i.e., item content), contrary to some empirical observations (Kingston

& Dorans, 1984).

The one-sided nature (i.e., position effects are entirely due to items or peo-

ple) of these solutions does not comport with observed effort moderation of

position effects (Weirich et al., 2017), nor with evidence of within-person varia-

tion in response time (Domingue et al., 2021). Thus, encountering an item early

as opposed to late may have a significant impact on how the item is perceived

by the test taker, manifesting as a dependence of estimated item parameters on

the location in which the item was encountered. This dependence comes hand

in hand with significant between-person variability in the rate at which these

response processes evolve. Such heterogeneity would be especially troublesome

in CAT settings, where items are selected and delivered based on pre-calibrated

item parameters. These facts suggest that solutions allowing for variation of

functioning across both items and people may be required.

It is important to recognize that the presence of position effects does not

always necessitate the modeling of position effects, but there are downstream

consequences. In the case of a few test booklets taken by multiple students that

exhibit position effects, differences in estimated ability distributions can, in

practice, be reconciled using equating. If there are individual differences in item

position effects, however, differences in item position may distort estimated

ability scales enough to make between booklet comparisons and rank ordering

impossible. Computer adaptive tests only exacerbate this problem, as large item

banks and variable item positions can result in only a single student encounter-

ing a specific arrangement of test items. In this case, the use of pre-calibrated

item parameters can induce potentially large amounts of error in the measure-

ment of person ability, comprising a significant threat to validity in high-stakes

testing scenarios. As such, explicit modeling of position effects may be required

to appropriately compare test takers who are exposed to different items in dif-

ferent locations.

To address these shortcomings and reconcile observed position effects with

the notion of an evolving response process, we propose a novel position-

sensitive IRT model that is a mixture of item response models. Our goal is to

construct an interpretable model of position effects that produces comparable

ability estimates while also allowing for item- and person-level variation in

position effects. We first describe the model and its estimation. Next, we
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present a series of simulations to demonstrate both parameter recovery and the

behavior of the model in the absence of position effects. We then turn to an

empirical application using a large college admissions test from Brazil. Here,

we demonstrate how the model can be applied to new data and show that it can

(a) allow for a single IRT model to be estimated that accounts for differences in

test difficulty due to item ordering and (b) shed light on the behavior of items

across different positions in a test booklet.

Model

As our approach is based upon IRT, we begin with a brief overview of the

key constituent models that will also assist in the introduction of notation. As

used here, IRT models the probability that an individual j responds correctly to

an item i as a monotonically increasing function of a person-side latent ability,

uj, and a set of item-side parameters. In its simplest form, IRT uses a single item

parameter, bi, and a logistic link function to describe the probability of correct

response. In this 1PL model, the probability depends solely on the difference

between the individual’s latent ability and the item’s difficulty, bi. Taking s zð Þ
to be the standard logistic sigmoid function,

s zð Þ= 1

1+ e�z
:

We can simplify the notation for the 1PL item response function (IRF):

P Xji = 1juj, bi

� �
=s(uj � bi): ð1Þ

More complex versions of the IRF exist, including formulations that adjust the

rate at which the function increases or modifies the lower and upper asymptotes.

We call specific attention to the version that estimates the rate at which the

response probability increases: the 2PL) model, which adds a discrimination

parameter, ai, that describes how well an individual item discerns between high

ability and low ability respondents:

P Xji = 1juj,ai, bi

� �
=s ai uj � bi

� �� �
: ð2Þ

Mixture Item Response Models

Mixture models are not new to IRT applications (Sen & Cohen, 2019) but

have increased in popularity and usage as access to computing resources has

become more common and less expensive (von Davier & Rost, 2018). Rost

(1990) originally proposed the IRT mixture model as a combination of latent

class analysis and the Rasch model. Work by Yamamoto (1995) recognized that
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two different item response models may be required in the mixture. This model,

called the HYBRID model, has been used in tests with time pressure where a

respondent may switch from an effortful response process to a random response

process as time runs down. Importantly, this work models a specific type of

position effect as a change in the respondent’s cognitive process. One particular

extension, the speededeness model Yamamoto and Everson (1995), estimates

points in the item sequence where respondents switch from a Rasch IRF to a

random guessing IRF and has been used by others, including Bolt et al. (2002).

Our model follows this tradition by using a mixture of two IRFs meant to

separately capture early and late test response processes. Most mixture IRT

models (including the HYBRID model and its extensions) are discrete mixtures,

meaning that individual item responses are assumed to belong to a specific

group, and the mixing parameters estimate a probability of group membership.

We instead conceptualize the overall IRF as a continuous combination of two

response modes, as in the continuous HYBRID (C-HYBRID) extension (Nagy

& Robitzsch, 2021). We utilize the same functional form imposed on the mixing

parameters that Nagy and Robitzsch (2021) use, but instead conceptualize the

two types of response behavior the model combines as both dependent upon the

respondent’s latent ability. These response behaviors are described as early- and

late-test IRFs. This allows for a person to experience variation in response prob-

ability that depends on where an item is encountered. The mixing proportions of

the two models, as in the C-HYBRID model, are functions of both the location

of the item in the test booklet and person-level characteristics. As such, our

method diverges from the discrete mixture tradition and may be considered an

extension of the C-HYBRID model. Our work diverges from the C-HYBRID

model in that our second response behavior also depends upon person ability,

which may be more reasonable in high-stakes testing situations or places where

test speededness is not a significant constraint on individual performance.

Incorporating Position Sensitivity

We allow for person- and item-level heterogeneity in position effects via a

model that presupposes position effects have both person-side and item-side

components. We do this by constructing an IRF that is a mixture of two kernel

IRFs, one modeling the person-item interaction had it occurred early in the test

(indexed by a subscript a, the first letter of the Greek alphabet), while the other

models the person-item interaction had it occurred late in the test (indexed by a

subscript v, the last letter of the Greek alphabet). Each of these IRFs is allowed

to have its own set of estimated item parameters (denoted bai and bvi). We use

a mixing parameter, pji, to allow the mixture of these two kernel IRFs, denoted

c, to vary smoothly as a function of the difference between an item’s position

and an estimated person-side parameter
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P Xji = 1juj, bai, bvi,pji

� �
=pjica(uj, bai)+ 1� pji

� �
cv(uj, bvi): ð3Þ

The simplest practical version of Equation 3 uses the 1PL IRF in Equation 1 as

the kernel. In that case, caui, bai)=suj � baj) and cvui, bvi)=suj � bvj). We

write the full probability that student j responds correctly to item i as:

P Xji = 1juj, bai, bvi,pji

� �
=pjis(uj � bai)+ 1� pji

� �
s(uj � bvi), ð4Þ

where Xji = 1 if student j responds correctly to item i (otherwise Xji = 0) and uj

is student j’s latent ability. Note that there are two item difficulty parameters,

bai and bvi. In the first term on the right-hand side, bai is item i’s difficulty when

encountered at the beginning of the test. In the second term, bvi is item i’s diffi-

culty when encountered at the end of the test.

Note the treatment of the dependence of response probability on position: we

continue to assume person ability is stable over the course of a single test. Thus,

an individual does not have corresponding early and late abilities, evidenced by

the presence of only a single uj. Between-person differences in the transition

from this early test state to late test state are captured in pji and are modeled to

not exhibit a dependence on the person ability, uj. We specify pji 2 0, 1ð Þ so that

it is high when the respondent is in an early test response state and low when in

a late test response state. To achieve this, we impose a theory-driven functional

form on pji. First, we require that the value of pji is monotonically decreasing

for an individual as they progress through the test (response process progression

does not backtrack). Inspired by the 2PL IRF, we write pji as

pji =s c kj � sji

� �� �
, ð5Þ

where sji 2 ½0, 1� is the sequence number, or the position in the test where stu-

dent j encountered item i. If the response from student j to item i is the n-th

recorded response for that student, we set sji = n� 1ð Þ= Nj � 1
� �

where Nj is

the total number of responses for the student. Thus, the first item they encounter

occurs at sji = 0, and the final item they encounter occurs at sji = 1, allowing

for variation in the number of items each respondent is exposed to.

Next, kj is a person-side parameter corresponding to the position in the test

student j is equally likely to be exhibiting early test and late test response beha-

vior. The c parameter then governs the rate of transition from early test to late

test response behavior and may be interpreted as the change in the log odds of

exhibiting early test behavior over the course of the entire test (recall that sji is

rescaled to the interval ½0, 1�). This is identical to the ‘‘process discrimination’’

parameter, l, from the C-HYBRID model of Nagy and Robitzsch (2021).

Importantly, these parameters can only be interpreted in the context of differ-

ences in item parameters. In cases where items become more difficult the later

they are encountered, kj can be interpreted as related to endurance or cognitive

stamina. In cases where items become less difficult, kj corresponds to how
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quickly individuals acclimate to the items or the rate at which practice effects

accumulate. If early and late test discriminations are estimated (with a 2+
parameter kernel IRF), these parameters can also relate to how quickly respon-

dents ‘‘get in the groove’’ or disengage from the test. Figure 1 shows how pji

can vary as a function of item position. Here, each line has the same c, but a

separate kj value. Recalling that higher values of pji correspond to higher pro-

portions of early test response behavior in the mixture, we observe for higher

values of the person parameter kj, the respondent preserves primarily early test

behavior further into the test. Here, we also emphasize that the magnitude of

the position effects are captured in the difference between early and late test

difficulties, d= bv � ba. Figure 2 shows the predicted response probability for

three different items with different d values, encountered in different test posi-

tions, sji

� �
. The different lines demonstrate how Equation 4 responds to changes

in item position, with the vertical spread from sji

� �
= 0 to sji

� �
= 1, demon-

strating the maximum magnitude of observed position effects. Looking at

separations of d 2 f0:25, 0:5, 1g across the three panels, we see that about

FIGURE 1. The evolution of pji as a function of item position for a variety of kj values.

Recall that pji is interpreted as the proportion of early test IRF in the mixture and is, by

construction, monotonically decreasing as a function of item position.
Note. IRF = item response function.

Kanopka and Domingue

7



u= 0, the differences in the probability of correct response from the first item

to the final item are �0:04,20:08,20:15, respectively. These differences show

how the model parameters encode the magnitude of the observed position

effects for each item and demonstrate that for d= 0, items exhibit no position

effects.

Estimation

The estimation of more flexible models with more parameters naturally

comes at a computational cost. We begin by benchmarking the estimation chal-

lenge for the position-sensitive model relative to conventional alternatives.

Recall that this approach estimates two full sets of item parameters for each item

FIGURE 2. Example IRF for an item with early test difficulty ba =20:25 and late test

difficulty bv 2 f0, 0:25, 0:75g. Each panel is labeled by the difference in difficulties,

bv � ba. All panels show IRFs generated with c= 3 and kj = 0:5. Each line shows the

probability of correct response as a function of the item position, sji, giving a sense of

the degree to which the difficulty parameter separation impacts the probability of correct

response. Note that because bv.ba, the item is perceived as harder the further into the

test it is encountered.
Note. IRF = item response function.
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and two parameters per person. As such, the estimation of a unidimensional

position-sensitive IRT model with a K-PL kernel for a test with N items and M

respondents involves, at most, 2(K 3 N +M)+ 1 parameters. Importantly, we

note that the overall complexity of O KN +Mð Þ and the number of parameters

estimated is linear in the number of items and persons, making it comparable to

the number of parameters estimated by unidimensional and multidimensional

IRT models.

Traditionally, IRT software developers tend to prefer a marginal maximum

likelihood (MML) estimation procedure, often using the expectation maximiza-

tion (EM) Algorithm (Bock & Aitkin, 1981) with quadrature points, as it pro-

duces asymptotically consistent estimates of item parameters. Markov Chain

Monte Carlo (MCMC) estimation is also a common and flexible alternative,

though run times can be much longer than EM-based approaches. As we sug-

gest, the use of our model for adaptive tests that may have large numbers of

respondents and huge item banks, we propose the use of advances in optimiza-

tion driven by the deep learning literature. While framing the problem in terms

of joint maximum likelihood (JML) estimation is not guaranteed to produce

asymptotically consistent estimates of item parameters for all IRT models, it is

computationally efficient to implement, converges faster than MCMC, and pro-

duces good results even in high dimensional scenarios (Chen et al., 2019).

Similar to the constrained JML procedure implemented by Chen et al. (2019),

we impose an ‘2 regularization penalty (also known as a ridge penalty; see

Hastie, 2020) on the likelihood when estimating person parameters. This is ana-

logous to, though slightly different from, treating person parameters as random

effects (see De Boeck, 2004, for more information on person-side random

effects in the estimation of IRT models). Importantly, this helps combat the

divergence of estimated parameters in the presence of respondents of extremely

high or low ability and can work to stabilize the estimation of item parameters.

After item parameters are estimated, person parameters are then estimated using

unpenalized maximum likelihood estimation, as is done in MML implementa-

tions. Given this, our software implementation uses a JML approach implemen-

ted in Python (Van Rossum & Drake, 2009) and PyTorch (Paszke et al., 2017).

This allows for multiple benefits. First, we take advantage of PyTorch’s auto-

matic differentiation. This allows the same basic optimization framework to be

quickly applied to increasingly baroque kernel IRFs. Additionally, we take

advantage of the Adam optimizer1 (Kingma & Ba, 2014). Adam is an imple-

mentation of stochastic gradient descent (SGD), where optimization steps are

taken along gradients with respect to individual observations (as opposed to the

full dataset, as in vanilla gradient descent). In theory, this allows for more fre-

quent, but noisier, parameter updates that may decrease convergence time. In

practice, we implement a minibatched version of Adam, where optimization

steps are taken along gradients with respect to a subset of the data, increasing
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the number of parameter updates per iteration through the full training data rela-

tive to full batch gradient descent, while also reducing the variance in each indi-

vidual update relative to SGD. Adam also uses a variable learning rate, meaning

that the algorithm makes large updates early in fitting and reduces the size of

individual steps as it approaches convergence. This adaptively balances fitting

speed with numerical precision. Regularization is also built into the PyTorch

implementation. The key advantage of Adam is the use of momentum (see Qian

[1999] to further smooth update steps and accelerate model fitting. This is done

using moving averages of the gradient to adjust individual parameter updates

(for convergence proofs and remarks on limitations, see Défossez et al., 2020;

Reddi et al., 2019). Finally, our PyTorch implementation allows computation to

be offloaded to a graphical processing unit (GPU) if available, which more effi-

ciently handles the repeated matrix multiplication operations used in gradient-

based optimization.

To ensure model identification, we assume that all person parameters,

namely uj, kj, are normally distributed. This is enforced, computationally, by

the introduction of ‘2 regularization during the person parameter update step.

This is similar to treating person parameters as random effects, in that person

parameters are shrunk toward their means, but different in how much shrinkage

is applied. Random effects use the strength of evidence, with more evidence

inducing less shrinkage, to determine the amount of shrinkage. Regularization,

on the other hand, allows users to set the amount of shrinkage they desire.

Additionally, we also implement item centering by enforcing that early test

difficulties are mean zero �ba = 0
� �

.

We additionally make two reparametrizations at the software level. In the first,

we replace the late test difficulty with the early test difficulty plus the offset,

bvi = bai + di, ð6Þ

as in testing, we found this change to result in more stable parameter recovery

and faster convergence. The second change we make, borrowed from Nagy and

Robitzsch (2021), involves the reparametrization of the functional form of pji.

Specifically, we modify Equation 5 by rescaling kj as follows:

pji =s c kj � sji

� �� �
=s �k + kH

j � c � sji

� �
:

This allows for two main benefits. First, �k, the mean of the kj distribution, and c

are estimated alongside item parameters. This leaves only the individual-level

variation from the whole-test behavior, kH

j , to be estimated alongside person

parameters. Since �k is the mean of the rescaled kj distribution, kH

j is now mean

zero, allowing it to be properly shrunk by ‘2 regularization in the person-side

update step. Additionally, this also leads to more stable parameter recovery and

faster convergence.
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One key challenge with estimation comes with the selection of starting para-

meters. Specifically, if initial item parameters are not offset (i.e., such that

bai � bvij j.d for some d) during early rounds of model fitting, the model may

not learn to separate the parameters unless there are a large number of respon-

dents, creating a situation analogous to the cold-start problem in recommender

systems (Lam et al., 2008). We solve this problem by using a fixed offset of

di = 0:5 for the starting value of parameters across all items. While not the

most computationally efficient solution, merely specifying some initial separa-

tion of item parameters performs well even in the case when di ł 0. For other

initializations, we specify software defaults to be

uj;N 0, 1ð Þ
kH

j = bai = 0

di = t= 0:5

c= 1

The Python software implementation we have developed is invoked from the

command line and allows users to specify kernel IRF, maximum number of

parameter update step alternations, maximum number of iterations within each

parameter update step, batch size, learning rates for item and person parameter

update steps separately, amount of regularization for person parameter update

steps, and convergence thresholds. Additionally, it will autodetect the availabil-

ity of a GPU for use in estimation.

Method

Here, we present two simulation studies and one empirical example. The

simulation studies probe two specific aspects of model behavior: parameter

recovery under a known data-generating model and model behavior in the

absence of position effects. The empirical example illustrates how the model

can be applied to analyze data with observed position effects but an unknown

data-generating process.

Study One

We first begin by simulating data from the position-sensitive model with a

1PL kernel to demonstrate parameter recovery under a variety of conditions.

We simulate data with Npersons 2 f50, 100, 500, 1,000g respondents and

Mitems 2 f20, 50, 100g items. All conditions are fully crossed with

Nreplications = 100 replications within each condition. As such, each plot below

contains the results of Npersons 3 Mitems 3 Nreplications = 1,200 simulations. Each

is fit using a convergence threshold of e= 0:001, a fixed learning rate of 0.05,
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batch size of 64, and a regularization parameter of l= 10�5. Note that these

will impact both convergence speed and precision and, in practice, ought to be

tuned to a specific application.

Within each simulation condition, we first generate item parameters.

Referencing Equation 6, we first construct test and item parameters by drawing

the response behavior transition, early item difficulties, and difficulty offsets

such that

c;N 1, 0:42
� �

bai;N 0, 1ð Þ
di;N 0:5, 0:52

� �
:

We then draw person parameters as

uj;N 0, 1ð Þ
kj;N 0, 0:22

� �
:

Additionally, we apply the restrictions that c 2 ½0:25, 1:75� and kj 2 ½0, 1�. Next,

we generate the sequence numbers, sji, by assuming each respondent responds

to each item but is exposed to it in a random order. We do this by shuffling the

sequence from f1, . . . ,Mitemsg and then rescaling them to be on the unit inter-

val, ½0, 1�. Finally, we generate individual responses by making individual

Bernoulli draws with the probability of correct response, P Xji = 1
� �

, according

to Equation 4.

Item Parameter Recovery. We first look at the ability of the model to recover

the item parameters, bai, bvi
. Note that this recovery is in line with the specifi-

cation of Equation 4, not the way the model is estimated in software, nor how

the simulated data are generated. We first compute the root mean squared error

(RMSE) within each replication across all estimated item difficulties (both early

and late, indexed by t), computed as

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2M

X
t2 a,vf g

XM
i= 1

(b̂ti � bti)
2

vuut , ð7Þ

where M is the number of items. Note that because each item has two difficul-

ties, we average over 2M parameters. In Figure 3, we show the average RMSE

from the 100 replications with a 95% confidence interval along the y-axis.

Along the x-axis, we show the number of respondents. Along the panels, we

vary the number of items. In general, we see that as the number of respondents

increases, the RMSE in the recovery of item parameters decreases, with the

exception of the N = 1,000,M = 20 cases This discrepancy is not necessarily
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problematic, as the RMSE can be driven down further using a different

convergence threshold and degree of person parameter regularization for each

simulation condition. Additionally, we see that RMSE is lower for M = 50 than

it is for M = 100. As good item parameter estimation requires observing items

in a variety of positions, this is the first indication that the number of respon-

dents plays an extremely important role in parameter estimation. In general,

more items require an increasing number of respondents to estimate an appro-

priate separation between early and late test difficulties, a consideration we will

explore shortly.

Figure 4 is the same as above, but now with the number of items along the

x-axis and number of respondents varied along panels and colors. Here, we see

that as the number of respondents increases, RMSE decreases. Despite this,

however, for a fixed number of respondents, the RMSE is not monotonically

FIGURE 3. RMSE for item parameter recovery. RMSE is displayed on the y-axis,

number of respondents along the x-axis, and number of items vary across panels and

colors. Each point is the mean and 95% confidence interval derived from 100

replications. We see a general relationship whereby more respondents produce lower

RMSE.
Note. RMSE = root mean squared error.
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decreasing with the number of items, pointing to a more complex dependency

between hyperparameter selection, test length, and the number of respondents

for parameter recovery.

Figure 5 shows bias in parameter recovery along the y-axis, computed within

each replication as

Bias=
1

2M

X
t2fa,vg

XM
i= 1

b̂ti � bti, ð8Þ

where M is the number of items and we again average over 2M parameters. The

number of respondents varies along the x-axis and the number of items varies

across panels and colors. Here, we see a story similar to the one above. For small

numbers of items M = 20ð Þ, especially with large numbers of respondents, bias

FIGURE 4. RMSE for item parameter recovery. RMSE is displayed on the y-axis,

number of items along the x-axis, and the number of respondents vary across panels and

colors. Each point is the mean and 95% confidence interval derived from 100

replications. We see a general relationship whereby more respondents produce lower

RMSE.
Note. RMSE = root mean squared error.
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is unacceptable. For larger numbers of items, however, bias is generally near

zero. Figure 6 shows bias with the number of items along the x-axis and the

number of respondents varying across panels and colors. Here the relationship is

less clear-cut, though the magnitude of overall bias is small and nearly all of the

95% confidence intervals still cover zero.

A natural question is to wonder what is the source of the errors in parameter

recovery may be. Figures 7 and 8 show RMSE and bias on the y-axis, respec-

tively, with the number of items along the x-axis. Note that RMSE and bias are

averaged over M parameters within each replication, as the summation over t in

Equations 7 and 8 is no longer present. Now, the number of respondents varies

along horizontal faceting and colors, while the vertical faceting splits between

early and late test difficulty. When comparing RMSE for early and late test diffi-

culties in Figure 7, we see that the RMSE is lower for early test parameters than

for late test parameters. This points to issues with parameter recovery being

more closely tied to the model being unable to properly separate the late test

FIGURE 5. Bias for item parameter recovery. Bias is displayed on the y-axis, the

number of respondents along the x-axis, and the number of items vary across panels and

colors. Each point is the mean and 95% confidence interval derived from 100

replications. We see that, in most cases, bias is near zero.
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difficulty parameters from the early test difficulties, as opposed to the location

of items on the scale. This is especially problematic for the N = 1,000 respon-

dents M = 20 items condition, where the late test difficulty RMSEs are

extremely high. This problem can be reduced by reducing convergence thresh-

olds and increasing the amount of regularization in the person parameters.

Figure 8 shows bias in the same way. First, note that universally, bias in early

test difficulties is near zero. For smaller numbers of items and higher numbers

of respondents, late test difficulties are overestimated. That is, the model overse-

parates difficulties, which can be reduced by increasing the amount of regulari-

zation as the number of respondents increases. For higher numbers of items or

lower numbers of respondents, the model tends to underestimate late test diffi-

culties, underseparating difficulty parameters.

Person Parameter Recovery. Next, we turn to the recovery of the person

parameters, uj and kj. Recall that during model fitting, item parameters are

FIGURE 6. Bias for item parameter recovery. Bias is displayed on the y-axis, the

number of items along the x-axis, and the number of respondents vary across panels and

colors. Each point is the mean and 95% confidence interval derived from 100

replications. We see that, in most cases, bias is near zero.
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estimated directly while person parameters are subject to ‘2 regularization, with

person parameters being re-estimated at the end without regularization. This is

because while regularization will stabilize the estimation of the item parameters,

it will necessarily bias the estimates of person parameters. During this final

stage of estimation, we found that 140 of 1,200 replications were subject to

diverging estimates of kj for some respondents, classified by replications where

RMSEk.
ffiffiffiffiffi
10
p

. As such, we have excluded these 140 replications from the fol-

lowing analysis. Table 1 shows the distribution of excluded replications. Notice

that these occur almost exclusively for simulation conditions with large numbers

of respondents. This may be due to a higher likelihood of observing extreme

FIGURE 7. RMSE for item parameter recovery, split by early and late test parameters.

RMSE is displayed on the y-axis, the number of items along the x-axis, and the number

of respondents vary horizontal facets and colors. The top row is early test difficulties,

while the bottom row is late test difficulties. Each point is the mean and 95% confidence

interval derived from 100 replications. In general, RMSE is lower for early test

parameters than late test parameters, indicating that while estimated difficulties are

correctly located, separation is a larger source of previously observed error.
Note. RMSE = root mean squared error.
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values of kj with more respondents. As such, putting software thresholds on val-

ues of kj is likely required to solve this behavior.

First, we look to the recovery of the person ability, uj. Figure 9 shows

RMSE on the y-axis, the number of respondents on the x-axis, and the number

of items varying across panels and colors. Here we see that the primary driver

of recovery error is the number of items, with RMSE for ability recovery being

relatively stable for a given number of items. We see the variation in RMSE

shrinking as the number of respondents increases, likely due to improved

item parameter estimation. Next, we look at Figure 10, which shows bias on the

y-axis. Here, we see that while bias is generally low, abilities are typically

FIGURE 8. Bias for item parameter recovery, split by early and late test parameters.

Bias is displayed on the y-axis, the number of items along the x-axis, and the number of

respondents vary horizontal facets and colors. The top row is early test difficulties, while

the bottom row is late test difficulties. Each point is the mean and 95% confidence

interval derived from 100 replications. For early test parameters, bias is essentially zero.

For late test parameters, however, estimates tend to be downwardly biased unless there

are smaller numbers of items and high numbers of respondents, resulting in difficulties

that are underseparated.
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overestimated. Additionally, the bias moves toward zero as the number of

respondents increases.

Next, we look at the estimation of the individual switching point, kj. Recall

that this is the position where the mixture is equal parts early test response pro-

cess and late test response process. Figure 11 shows RMSE, while Figure 12

shows bias. Note that the magnitude of these errors is quite large, especially

with larger numbers of items. Even with rejecting some replications, a more

aggressive constraint of kj must be implemented at the software level. For this,

we advise increasing the amount of regularization used during person parameter

estimation as the number of respondents increases. Failure to accurately recover

kj parameters causes the software to fail to properly separate early and late test

difficulties. While stricter exclusion criteria could have been implemented here,

it is important to demonstrate the sensitivity of kj to variation in sample size.

It is also important to note that, like most other optimization software, our

software implementation controls many of the features of model fitting with

hyperparameters tunable by the end user and can be optimized to provide better

or worse performance in individual scenarios. We have implemented what we

believe to be sensible defaults that would apply to many scenarios, but better

efficiency and parameter recovery may be obtained with additional tuning. For

best performance, we advise reducing the convergence threshold as the number

of estimated person and item parameters increases, as well as increasing the

amount of regularization as the number of respondents increases.

TABLE 1.

Number of Excluded Simulations by Condition

Mitems Npersons N excluded

20 50 1
20 100 3
20 500 38
20 1,000 23
50 50 0
50 100 0
50 500 25
50 1,000 13
100 50 0
100 100 0
100 500 23
100 1,000 14

Note. A simulation was excluded if the estimation of kj was unstable, defined as RMSEk.
ffiffiffiffiffi
10
p

.

Note that while a total of 140 simulations (11.7%) are excluded, these are localized within trials

that had high numbers of respondents.
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Study Two

One worry when implementing a more flexible model is that it will overfit to

small variations in the data used to estimate its parameters. As such, we want to

understand how our model performs in a context where position effects are not

present. To do this, we present a short simulation whereby we simulate item

responses using a 1PL model and then fit a position-sensitive model using a

1PL kernel. Knowing the true data-generating process, we recognize fitting a

model with one extra parameter per person and item is inefficient. Still, we

hope to observe two features in the position-sensitive model. First, when there

are no position effects, we look to see that early and late test item difficulties

are largely identical. Second, we look for a strong correlation (i.e., near unity)

between both early and late item difficulties in the position-sensitive model and

the data-generating model.

FIGURE 9. RMSE for recovery of person ability, uj. RMSE is displayed on the y-axis,

the number of respondents along the x-axis, and the number of items is varied across

panels and color. We observe a strong dependence of RMSE on the number of items,

with more items producing lower RMSE.
Note. RMSE = root mean squared error.
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We simulate data using a 1PL model with N = 1, 000 respondents with

abilities drawn from a standard normal, M = 50 dichotomous items with

difficulties drawn from a standard normal, and no position effects. We fit two

models to the data: a standard 1PL model estimated in R using mirt (Chalmers,

2012) and a position-sensitive IRT model using a 1PL kernel. The left panel of

Figure 13 shows the relationship between early and late test difficulty when

estimated using the position-sensitive model. Since the probability of correct

response was simulated with no dependence on item position, we expect

bai = bvi. In general, this is what we observe. Next, we want to see how esti-

mated item difficulties from the position-sensitive model compare to those from

a 1PL model. The right panel of Figure 13 plots estimated 1PL difficulty against

the early test difficulty baið Þ for the position-sensitive model. We selected

early test difficulty somewhat arbitrarily, as early and late test difficulties were

nearly identical. Again, we see that estimated difficulties are extremely highly

correlated and nearly identical, aligning tightly along the y= x line.

FIGURE 10. Bias for recovery of person ability, uj . Bias is displayed on the y-axis, the

number of respondents along the x-axis, and the number of items is varied across panels

and color. As the number of respondents increases, bias in ability estimation tends to

approach zero.
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Finally, we look at ability estimates. Figure 14 plots person ability estimated

from a 1PL model against person ability estimated from the position-sensitive

model. Here, we see two key features of the plot. First, notice that there are hori-

zontal bands of points. This occurs because the sum score is the sufficient statis-

tic for the 1PL model, and as such, it produces a discretized ability distribution.

The position-sensitive model breaks this property by having subtle variations in

early and late item parameters and requiring information about item position to

construct an ability estimate. Additionally, these abilities are estimated differ-

ently. For the 1PL model, mirt first estimates item parameters using an MML

approach and then uses maximum likelihood estimation to estimate person para-

meters. The position-sensitive model uses a JML approach to estimate both

simultaneously. While the distributions of estimated abilities are ordered by the

sum score (see Sijtsma et al., 2024), the sufficient statistic for the ability

FIGURE 11. RMSE for recovery of person switching point, kj. RMSE is displayed on

the y-axis, the number of respondents along the x-axis, and the number of items is

varied across panels and colors. Note that the final estimation of kj can be unstable for

some replications, leading to extremely high magnitudes for RMSE in replications with

larger numbers of respondents.
Note. RMSE = root mean squared error.
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estimate in the position-sensitive model, even with a 1PL kernel, is clearly not

the sum score. While the position-sensitive model will not separate early and

late item parameters when position effects do not exist, the additional para-

meters will introduce measurement error to the ability estimation procedure that

may not be appropriate for high-stakes decisionmaking.

Empirical Application: Brazilian National College Entrance Exam

Finally, we turn to an empirical application with observed position effects.

In the 2014 administration of the math portion of the Brazilian national college

entrance exam (ENEM), students were randomly assigned one of four booklets.

These booklets all contained the same items, with the only variation being item

ordering. Despite this, score distributions for each booklet were different. Given

the way ENEM is administered, this plausibly attributes differences in observed

score distributions to position effects. Below, we fit the position-sensitive model

FIGURE 12. Bias for recovery of person switching point, kj. Bias is displayed on the y-

axis, the number of respondents along the x-axis, and the number of items is varied

across panels and colors. Note that the final estimation of kj can be unstable for some

replications, leading to extreme observed bias in replications with larger numbers of

respondents.
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to the ENEM 2014 math data. From this, we examine the item parameters and

how they relate to observed position effects and show that the ability distribu-

tions across booklets are aligned.

Background. ENEM is the Brazilian national college entrance exam (INEP,

2009). Each year, students take 180 multiple-choice items spread across four

domains (language, social science, natural science, and mathematics) on two

consecutive Sundays. Administration is simultaneous across the country, so stu-

dents have a start time that ranges from 10:30 a�m to 1:30 p�m., depending on

where they live. Because all students are exposed to items simultaneously,

ENEM can use a smaller item bank than a large-scale test with multiple admin-

istrations. This makes item integrity much less of a security concern, though it

increases the possibility of within-classroom cheating. ENEM’s approach is to

administer the same 180 items to all students (minimizing costs associated with

item development) but randomize the order of the items (to discourage cheat-

ing). This is done by developing four separate booklets, each labeled by cover

color. These booklets are assigned to students based on their seating position so

that students with the same color booklet do not sit next to each other. Booklets

are then scored using a 3PL model with pre-calibrated item parameters.

FIGURE 13. Comparison of estimated item difficulties from the 1PL model and the

position-sensitive mixture model. The left panel shows position-sensitive early and late

test difficulties plotted against each other. The right panel shows 1PL difficulty along the

y-axis while early test difficulty is plotted along the x-axis. As early and late test

difficulties are approximately equivalent to each other and 1PL difficulties, we conclude

the position-sensitive model correctly recovers the 1PL structure.
Note. 1PL = one parameter logistic.
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In 2014, in the math section, students who received the blue book answered

fewer questions correctly and received lower scores than students on other

booklets (see Table 2). To get a better sense of how the score distributions differ

between booklets, the left panel of Figure 17 highlights the highest and lowest

performing booklets (gray and blue, respectively). The x-axis shows ability per-

centiles and the position of each line on the y-axis shows the proportion of

respondents taking that booklet at or above that ability percentile. The observed

gap between the ability distributions on the two booklets is problematic for two

reasons. First, ability distributions within each booklet ought to be equivalent in

expectation, as booklets are assigned at random. They do not appear so, with

gaps as large as 10% of respondents in some positions. Because there are so

many respondents, sampling variation is unlikely to be the cause of these

observed differences. As such, differences are likely due to either a massive fail-

ure of randomization or, more likely given the scale of the test, non-equivalence

of booklets. Second, ENEM makes no attempt to do post-administration

FIGURE 14. Comparison of estimated abilities from the 1PL model and the position-

sensitive mixture model. The structure of the model allows for respondents with the same

sum score to receive different ability estimates.
Note. 1PL = one parameter logistic.
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equating of scores across booklets. As such, if pre-calibrated item parameters

are used and they are not stable across booklets, the resultant scores are not

comparable. Given the scale of ENEM, this could amount to hundreds of thou-

sands of respondents incorrectly sorted around a given cut point. The impor-

tance of ENEM, combined with the observed difference in scores where it

should not have existed, gives rise to a threat to the validity of score

interpretations.

Considering that the only difference in the test between different booklets

was the item ordering, position effects could be at play. Figure 15 shows the

results of a regression of item response on item position for a subset of

N = 10,000 test takers sampled evenly across booklets for all 45 items. Items

are arranged along the x-axis by their position in the yellow booklet. Along the

y-axis is the point estimate for the coefficient on item position with a Bonferroni

corrected 95% confidence interval. Here, we see evidence of position effects in

34 of the 45 items. Items appearing below the y= 0 line in this plot exhibit a

probability of correct response that decreases as the item is encountered later in

the test, which occurs in 16 of the 34 items. There is a standard psychometric

solution to this problem, where a separate scoring model can be fit to each book-

let and the ability distributions can be aligned using some equating method. We

instead model position effects directly in the scoring model.

Data and Method. We used the 45 items from the math section of the 2014

administration of ENEM. All students were presented with the same 45 items

simultaneously in one of four colored booklets: blue, yellow, pink, and gray.

The order of the items within booklets was randomized by rearranging complete

pages. From the full pool of respondents, we selected a stratified random sam-

ple of N = 10,000 respondents across the four booklet colors who were prepar-

ing to graduate from high school.

We fit a single version of Equation 3 to our sample, using a 1PL kernel. After

model fitting, we have two sets of item parameters per item, one latent ability

per student, and one ‘‘endurance’’ parameter, kj, per student.

TABLE 2.

Distribution of Scores Across ENEM Booklets

Booklet Mean N correct Mean score

Blue 11.1 469.8
Gray 11.3 481.1
Pink 11.3 478.6
Yellow 11.4 477.6

Note. ENEM = Brazilian National College entrance exam.
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Results. We show results using a 1PL kernel. First, we look for an indication

that our model reasonably detects item position effects. To do so, we first com-

pute the difference in difficulty between the early and late item parameters,

di = biv � bia, with the expectations that items with larger magnitude position

effects ought to display a larger di. As such, we plot di against the coefficients

from the response regressions on item position from Figure 15. Figure 16 shows

this relationship. One concern might be that the variation in the position in

which an item occurs may be a driving force behind the observed magnitude of

position effects. To investigate this, we also color points by the standard devia-

tion of the four positions the item occurs in. Importantly, we observe that the

observed variation in item position does not seem to be associated with either

the magnitude of position effects or the degree to which di aligns with

expectations.

FIGURE 15. Regressions of correct/incorrect responses on item position for all 45

items in the math section of the 2014 administration of ENEM for a subset of

N = 10,000 respondents sampled evenly across booklet colors. Points colored pink have

a significant (Bonferroni corrected) coefficient on item position, implying that item

responses are dependent on the position where the item is encountered.
Note. ENEM = Brazilian National College entrance exam.
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Next, we look to see the degree to which estimated ability distributions align

after the application of the position-sensitive model. The right panel of Figure

17 shows the proportion of students performing above a certain cut score by

booklet, projected onto an ability percentile scale for comparison with the left

panel. The overlapping lines in the right panel of Figure 17 show that the appli-

cation of our position-sensitive model immediately closes the gap between what

were previously the highest and lowest ability booklets.

If high-stakes tests like ENEM are used for centralized admissions criteria,

multiple cut points are selected to sort respondents into groups for college

admission. As the 2014 administration of ENEM had nearly six million respon-

dents, cut-point selection without some method of ability distribution alignment

can result in the misclassification of hundreds of thousands of respondents sim-

ply based on booklet assignment at testing time.

FIGURE 16. Difference between early and late test difficulty, di, plotted against slopes

on item position from naive regressions to estimate position effects. Note that the mixture

model estimates position effects of a direction and magnitude that agrees with observed

trends.
Note. ENEM = Brazilian National College entrance exam.
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Discussion

In this article, we develop a mixture-based approach for dealing with position

effects. The approach allows for variation in both the degree to which items

vary in functioning across the assessment and the relative amount of the test that

respondents spend in different (i.e., early/late) responding modes. Central to this

method is the imposition of a functional form on the mixing parameter akin to

that of the C-HYBRID model (Nagy & Robitzsch, 2021). The two key contribu-

tions of this study are the mixing of early and late response processes with dis-

tinct item parameters to study position effects and the introduction of the Adam

optimization algorithm to psychometric work (Kingma & Ba, 2014). We con-

duct simulation studies to show suitable parameter recovery when the mixture

model is the data-generating model, as well as model behavior in the absence of

position effects. In general, we find that the model does not find position effects

when they do not exist, making it safe to use when only a subset of items exhibit

position effects. Estimation may be sensitive to the sample sizes of both persons

and items, as well as specific choices of hyperparameters like learning rate, the

amount of regularization, batch size, and convergence thresholds. We then use

this model to better understand position effects on a large-stakes standardized

assessment. This assessment has millions of respondents and is administered in

such a way that differences in ability distributions across booklets can be plausi-

bly attributed to only position effects. Despite not knowing the data-generating

process for this assessment, we demonstrate that the model produces interpreta-

ble item parameters that allow us to better understand position effects and

FIGURE 17. Proportion of students within a booklet at or above a cut point, by booklet.

The left panel uses ENEM reported scores and the right panel uses scores derived from

a position-sensitive model. Only the highest and lowest-performing booklets are shown.
Note. ENEM = Brazilian National College entrance exam.
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distributions of estimated person abilities that are comparable across different

item orderings.

Many large-scale and high-stakes testing programs use pre-calibrated item

parameters. This practice allows for theoretical flexibility when constructing

test forms from an item bank. However, when multiple test forms with variable

item positions are used, the assumption of stable item parameters may not hold.

This could pose a substantial threat to test validity, as booklet assignment con-

founds score interpretations that assume observed score differences are based

largely on latent ability. While many approaches to modeling position effects

exist (Debeer & Janssen, 2013), explicitly modeling position effects in a way

that is both flexible and identifiable offers test developers and users a way to

not only gather evidence about the potential magnitude of position effects but

also to investigate position effects at the level of individual items or persons.

One key use case for this model is in CAT. In testing scenarios where there

are only a few forms with permutations of items, between-form differences in

observed ability distributions can be aligned through an equating procedure.

With CAT, large item banks and flexibility in item positioning can result in an

enormous number of effective test forms, each exposed to as few as a single

respondent. In this case, position effects may introduce a new dimension of

comparability issues between different adaptive test takers and pencil-and-paper

respondents (Van der Linden & Glas, 2000; Wang & Kolen, 2001). In part, this

is because there is no true random assignment of item content. If there is a sus-

picion of position effects, using a position-sensitive model can account for dif-

ferences in individual response processes that evolve throughout the test.

Additionally, the software developed to fit this model is designed to be used

with a variety of flexible kernel IRFs, has tunable convergence criteria, and can

run on GPU to aid in model fitting for large data sets.

Our mixture formulation of a position-sensitive IRT model has theoretical

advantages and is safe to use when position effects are not present, but also has

limitations. First, model fitting may be computationally intensive depending on

both the amount of data collected and the booklet design. While drawing on fit-

ting techniques from the deep learning community and moving computation to a

GPU can provide a significant speed boost, more parameters necessarily come

with a computational burden (Kingma & Ba, 2014). Additionally, while we have

shown in simulation that the model tends not to overfit and agrees with vanilla

IRT models when position effects are not present, idiosyncrasies in individual

response patterns always have the potential to provide misleading results, though

this is not unique to our model. In simulation, we see that parameters that are

tightly bound to position effects can be extremely difficult to recover accurately

without large numbers of respondents, a problem that may be addressed with

new advances in estimation approaches (Belov et al., 2024; Welling et al., 2024;

Zhang & Chen, 2024). Additionally, model selection is always a key concern,
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and the ability of the model to, for example, produce aligned ability distributions

requires the selection of an appropriate kernel. Merely including position effects

won’t make the need for modeling item discrimination obsolete, for example.

There are many avenues for future work expanding on this study. The most

clear-cut is the implementation of more complex IRF kernels. Our use of only

the 1PL kernel is certainly a limitation of the present work. Another route that

we view as promising is the flexibility afforded in the specification of the func-

tional form of the mixing parameter. It is conceivable that this is an avenue in

which to include process data directly within a measurement model. This fol-

lows previous work by Molenaar et al. (2016) using hidden Markov models

with response time evidence to model distinct response states but does push the

model outside of the C-HYBRID framework. Given sufficient evidence that a

change in an individual’s response process can be described by some observa-

tion of their behavior on a test, this could be a principled way to include infor-

mation like response time, keystroke logs, or other data collected in a

computerized testing environment directly in the model.
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Note
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