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Position Effects



Visualizing Position Effects

Booklet One Booklet Two Booklet Three



Motivation
Position effects are also not even remotely new

- Position effects are often thought of as negative (fatigue or disengagement)
- Can also be positive (practice effects) or more complex
- Earlier work includes linear logistic test model (Hohensinn etmal., 2008) and 

explanatory item response models (De Boeck, 2004)
 Assume all respondents experience the same degree of parameter displacement
 Individual differences in willingness to persist or develop practice effects complicate the 

counterfactual reasoning that underlies the equating procedure (Tucker-Drob, 2011)
- Some more recent work models individual differences(Albano, 2013; Trendtel & 

Robitzsch, 2018; Weirich et al., 2014)
 Assumes item parameters are fixed across all respondents
 Position effects can depend on item features (Kingston & Dorans, 1984)



Motivation
Position effects are only becoming more important

- Computer adaptive tests present items many different orders
- Previous work finds that the within-person relationship between time use and 

accuracy evolves over the course of a large computer adaptive test and there is 
population heterogeneity in the evolution (Domingue, et al., 2021)  

- Implies response processes are evolving throughout a test making when an item is 
encountered potentially very important

- If position effects are bad enough, they can make using a test for between-person 
comparisons impossible



Setup

Position Effects
The order that items are encountered in can make a difference

Item-Side Effects

Item parameters 
(usually difficulty) 

change based on item 
position (Debeer and 

Janssen, 2013)

Complications

Test experiences that 
were designed to be 

equivalent may not be 
in practice

Person-Side 
Effects

Usually thought of as 
performance decline 
(Jin and Wang, 2014), 
but could also reflect 

practice effects

“Position effects” is a 
catch-all term for any 

dependency of the 
probability of correct 

response on item 
location



Can we develop an item response 
model in a way that controls for 

position effects while also  
providing more information 

about both persons and items?
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Item response function (IRF)
Probability of correct response depends on the difference between ability and difficulty

Person i responds 
to item j correctly

Person iʼs ability

Item jʼs difficulty

Logistic function constrains 
output between 0 and 1

Probability only depends 
on the difference between 
ability and difficulty

For convenience, weʼll replace the 
right-hand side of this equation with:



Incorporating Item Position into the Model

What changes?
- Item probability 

must depend on 
item position

- New item and 
person parameters 
to capture position 
effects

- Single person 
ability assumed 
constant over test

- Based on IRT

- Insufficient 
variation in item 
position

- Overfitting to 
non-existent 
position effects

What stays? Potential issues?
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Position Sensitive IRF
Probability of correct response now depends explicitly on item position

Person i responds 
to item j correctly Person iʼs ability Logistic functions that depend on the 

difference between ability and difficulty

Item jʼs difficulty at 
the end of the test

Item jʼs difficulty at the 
beginning of the test

A weight that depends 
on where person i 
encounters item j

Key understanding:
The weight is another logistic function of the 
difference between a person-specific location 
parameter, ki, and the position of the item, sij



Related Models

- This approach is similar to the HYBRID model proposed by Yamamoto (1995)
 Modeled two different response processes as a discrete mixture
 Combined effortful responding and random guessing

- Closer to the continuous HYBRID (or C-HYBRID) model of Nagy & Robitzsch (2021)
 Modeled two different response processes as a discrete mixture
 Combined effortful responding and random guessing
 Had similar functional form for the mixing parameter



Estimation



New Models Often Require New Software
Software development can gatekeep model development

- Model fitting software is pretty well understood and built 
out of well-known blocks

- You can look those blocks up and Ctrl+C / Ctrl+V
- You can use built-in tools like optim() in R

- There are typically three bespoke components required
- Data handling
- Model specification
- Model-specific utilities



Deep Learning Frameworks
Purpose built for efficiency and rapid iteration

- Code efficiency
- Data loading, model specifications, loss functions, and optimization are treated as 

independent components
- Auto-differentiation makes trying out different model specifications extremely easy
- Most commonly used options are single lines of code
- The bulk of the code youʼll write is completely boilerplate

- Computational efficiency
- Different built in optimization algorithms to balance convergence speed and precision
- Built in data structures designed for minimal memory footprints
- Easy access to multiprocessing on CPU or GPU computation

- Data efficiency
- Data loader objects efficiently process and iterate over large amounts of data
- Functions can accommodate full data, single observations, or minibatches



Torch or Tensorflow?
I clearly have strong opinions on this

- Both are good
- Open source
- Usable with Python and R
- Tons of documentation and community support

- Tensorflow
- More common in production environments
- Faster

- PyTorch
- More common in research communities
- Easier to use
- More readable code
- Pyro if youʼre Bayesian



Estimating the Position Sensitive Model
After lots of iterations, hereʼs where we ended up

- Optimization done using a joint maximum likelihood Alternating-Maximization 
procedure 

1. (E-step) Item parameters are held fixed while person parameters are estimated
2. (M-step) Person parameters are held fixed while item parameters are estimated
3. Repeat Steps 1&2 until convergence

- E and M-step optimizers can be tuned and configured separately
- Both use minibatch stochastic gradient ascent 
- Both use momentum and variable learning rates
- During the E-step, person parameters are regularized (L2)
- Final person parameters are estimated using MLE

- Computation done on GPU



Summary of Simulation Results
More information about simulations available in preprint linked at the end

- Parameter recovery is good when the position sensitive model generates data
- Model does not overfit to non-existent position effects
- When position effects are not present, model does not separate the early and late test 

parameters and produces results similar to an IRT model without position effects
- Model fitting speed is somewhat dependent on amount of data, initial values of 

estimable parameters, and hyperparameter selection
- Reasoning about sample size becomes really difficult, as item-by-position coverage 

becomes incredibly important
- Adding more items can make estimation worse if they arenʼt observed enough in their 

possible positions



Applying the Model



Massive Exam

Exame Nacional do Ensino Médio (ENEM)
ENEM is Brazilʼs national college entrance exam

High Stakes

ENEM is given once 
yearly and used for 

high school 
certification, university 

admissions, and 
scholarships

Unequal Results

Score distributions can 
vary depending on 

booklet assignment

Mostly 
Standardized
Everyone gets the 
same items at the 

same time,  but one of 
four booklets with 

randomized item order

Second largest exam of 
its kind. 3.4 million 

students took ENEM in 
2022



Especially Bad in 2014
ENEM Math score distributions were different by booklet

- Data from 6 million test takers in 2014
- Four colored booklets are assigned 

randomly within classrooms, so score 
distributions should be identical in 
expectation

- Difference in mean score between blue 
and grey booklet of 11.3 points



Mean Score Differences Undersell Problem 
Position effects results in the misclassification of potentially thousands of students



Equating Solves 
ENEMʼs Problem

ENEM is a Test Case
The real application is computerized and adaptive testing

Position Effects 
are Identified

The administration 
and design of ENEM 
plausibly attributes 
score differences to 

position effects

Data Generating 
Process Unknown

ENEM is real world 
data and the exact DGP 

by which position 
effects manifest here is 

unknowable

Position Effects 
Have Impact

When position effects 
exist but are ignored, 

they can have material 
consequences for test 

takers

If all you care about is 
misclassification, this 

model is overkill



Position Sensitive Model Aligns Distributions
Misclassification is minimized



Comparison of Early and Late Item Parameters
Item-side position effects are not uniformly in the same direction



Heterogeneity in Position Effects
Naïve approaches to estimating item-level position effects tell a similar story



Magnitudes of Position Effects as Expected
Both position sensitive and naïve approaches agree on item-level effects 



Self-Equating

Conclusions and Implications
Model properties are robust to many situations where position effects may be at play

Interpretable 
Parameters

Differences in item 
difficulties reflect 
observed position 

effects  

Investigative 
Value

Useful for adaptive and 
computerized 

scenarios when item 
position varies but 
effects may not be 
cleanly identified

Safe for General 
Use

In simulation, model 
does not overfit and find 

non-existent position 
effects or spread item 

parameters with 
insufficient information

Automatically 
produces scores 

individually adjusted 
for position effects
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