
A Position-Sensitive Mixture Item
Response Model

Klint Kanopka
Assistant Professor of Applied Statistics
New York University
klint.kanopka@nyu.edu

Paper forthcoming in the
Journal of Educational and
Behavioral Statistics

Overview

1. Position Effects
2. Position-Sensitive

Mixture IRT Model
3. Software and

Estimation
4. Empirical Application

(ENEM)

Position Effects

Visualizing Position Effects

Booklet One Booklet Two Booklet Three

Motivation
Position effects are also not even remotely new

- Position effects are often thought of as negative (fatigue or disengagement)
- Can also be positive (practice effects) or more complex
- Earlier work includes linear logistic test model (Hohensinn etmal., 2008) and

explanatory item response models (De Boeck, 2004)
 Assume all respondents experience the same degree of parameter displacement
 Individual differences in willingness to persist or develop practice effects complicate the

counterfactual reasoning that underlies the equating procedure (Tucker-Drob, 2011)
- Some more recent work models individual differences(Albano, 2013; Trendtel &

Robitzsch, 2018; Weirich et al., 2014)
 Assumes item parameters are fixed across all respondents
 Position effects can depend on item features (Kingston & Dorans, 1984)

Motivation
Position effects are only becoming more important

- Computer adaptive tests present items many different orders
- Previous work finds that the within-person relationship between time use and

accuracy evolves over the course of a large computer adaptive test and there is
population heterogeneity in the evolution (Domingue, et al., 2021)

- Implies response processes are evolving throughout a test making when an item is
encountered potentially very important

- If position effects are bad enough, they can make using a test for between-person
comparisons impossible

Setup

Position Effects
The order that items are encountered in can make a difference

Item-Side Effects

Item parameters
(usually difficulty)

change based on item
position (Debeer and

Janssen, 2013)

Complications

Test experiences that
were designed to be

equivalent may not be
in practice

Person-Side
Effects

Usually thought of as
performance decline
(Jin and Wang, 2014),
but could also reflect

practice effects

“Position effects” is a
catch-all term for any

dependency of the
probability of correct

response on item
location

Can we develop an item response
model in a way that controls for

position effects while also
providing more information

about both persons and items?

Item response function (IRF)
Probability of correct response depends on the difference between ability and difficulty

Item response function (IRF)
Probability of correct response depends on the difference between ability and difficulty

Person i responds
to item j correctly

Item response function (IRF)
Probability of correct response depends on the difference between ability and difficulty

Person i responds
to item j correctly

Person iʼs ability

Item response function (IRF)
Probability of correct response depends on the difference between ability and difficulty

Person i responds
to item j correctly

Person iʼs ability

Item jʼs difficulty

Item response function (IRF)
Probability of correct response depends on the difference between ability and difficulty

Person i responds
to item j correctly

Person iʼs ability

Item jʼs difficulty

Logistic function constrains
output between 0 and 1

Item response function (IRF)
Probability of correct response depends on the difference between ability and difficulty

Person i responds
to item j correctly

Person iʼs ability

Item jʼs difficulty

Logistic function constrains
output between 0 and 1

Probability only depends
on the difference between
ability and difficulty

Item response function (IRF)
Probability of correct response depends on the difference between ability and difficulty

Person i responds
to item j correctly

Person iʼs ability

Item jʼs difficulty

Logistic function constrains
output between 0 and 1

Probability only depends
on the difference between
ability and difficulty

For convenience, weʼll replace the
right-hand side of this equation with:

Incorporating Item Position into the Model

What changes?
- Item probability

must depend on
item position

- New item and
person parameters
to capture position
effects

- Single person
ability assumed
constant over test

- Based on IRT

- Insufficient
variation in item
position

- Overfitting to
non-existent
position effects

What stays? Potential issues?

Position Sensitive IRF
Probability of correct response now depends explicitly on item position

Position Sensitive IRF
Probability of correct response now depends explicitly on item position

Person i responds
to item j correctly

Position Sensitive IRF
Probability of correct response now depends explicitly on item position

Person i responds
to item j correctly Person iʼs ability

Position Sensitive IRF
Probability of correct response now depends explicitly on item position

Person i responds
to item j correctly Person iʼs ability Logistic functions that depend on the

difference between ability and difficulty

Position Sensitive IRF
Probability of correct response now depends explicitly on item position

Person i responds
to item j correctly Person iʼs ability Logistic functions that depend on the

difference between ability and difficulty

Item jʼs difficulty at the
beginning of the test

Position Sensitive IRF
Probability of correct response now depends explicitly on item position

Person i responds
to item j correctly Person iʼs ability Logistic functions that depend on the

difference between ability and difficulty

Item jʼs difficulty at
the end of the test

Item jʼs difficulty at the
beginning of the test

Position Sensitive IRF
Probability of correct response now depends explicitly on item position

Person i responds
to item j correctly Person iʼs ability Logistic functions that depend on the

difference between ability and difficulty

Item jʼs difficulty at
the end of the test

Item jʼs difficulty at the
beginning of the test

A weight that depends
on where person i
encounters item j

Position Sensitive IRF
Probability of correct response now depends explicitly on item position

Person i responds
to item j correctly Person iʼs ability Logistic functions that depend on the

difference between ability and difficulty

Item jʼs difficulty at
the end of the test

Item jʼs difficulty at the
beginning of the test

A weight that depends
on where person i
encounters item j

Key understanding:
The weight is another logistic function of the
difference between a person-specific location
parameter, ki, and the position of the item, sij

Related Models

- This approach is similar to the HYBRID model proposed by Yamamoto (1995)
 Modeled two different response processes as a discrete mixture
 Combined effortful responding and random guessing

- Closer to the continuous HYBRID (or C-HYBRID) model of Nagy & Robitzsch (2021)
 Modeled two different response processes as a discrete mixture
 Combined effortful responding and random guessing
 Had similar functional form for the mixing parameter

Estimation

New Models Often Require New Software
Software development can gatekeep model development

- Model fitting software is pretty well understood and built
out of well-known blocks

- You can look those blocks up and Ctrl+C / Ctrl+V
- You can use built-in tools like optim() in R

- There are typically three bespoke components required
- Data handling
- Model specification
- Model-specific utilities

Deep Learning Frameworks
Purpose built for efficiency and rapid iteration

- Code efficiency
- Data loading, model specifications, loss functions, and optimization are treated as

independent components
- Auto-differentiation makes trying out different model specifications extremely easy
- Most commonly used options are single lines of code
- The bulk of the code youʼll write is completely boilerplate

- Computational efficiency
- Different built in optimization algorithms to balance convergence speed and precision
- Built in data structures designed for minimal memory footprints
- Easy access to multiprocessing on CPU or GPU computation

- Data efficiency
- Data loader objects efficiently process and iterate over large amounts of data
- Functions can accommodate full data, single observations, or minibatches

Torch or Tensorflow?
I clearly have strong opinions on this

- Both are good
- Open source
- Usable with Python and R
- Tons of documentation and community support

- Tensorflow
- More common in production environments
- Faster

- PyTorch
- More common in research communities
- Easier to use
- More readable code
- Pyro if youʼre Bayesian

Estimating the Position Sensitive Model
After lots of iterations, hereʼs where we ended up

- Optimization done using a joint maximum likelihood Alternating-Maximization
procedure

1. (E-step) Item parameters are held fixed while person parameters are estimated
2. (M-step) Person parameters are held fixed while item parameters are estimated
3. Repeat Steps 1&2 until convergence

- E and M-step optimizers can be tuned and configured separately
- Both use minibatch stochastic gradient ascent
- Both use momentum and variable learning rates
- During the E-step, person parameters are regularized (L2)
- Final person parameters are estimated using MLE

- Computation done on GPU

Summary of Simulation Results
More information about simulations available in preprint linked at the end

- Parameter recovery is good when the position sensitive model generates data
- Model does not overfit to non-existent position effects
- When position effects are not present, model does not separate the early and late test

parameters and produces results similar to an IRT model without position effects
- Model fitting speed is somewhat dependent on amount of data, initial values of

estimable parameters, and hyperparameter selection
- Reasoning about sample size becomes really difficult, as item-by-position coverage

becomes incredibly important
- Adding more items can make estimation worse if they arenʼt observed enough in their

possible positions

Applying the Model

Massive Exam

Exame Nacional do Ensino Médio (ENEM)
ENEM is Brazilʼs national college entrance exam

High Stakes

ENEM is given once
yearly and used for

high school
certification, university

admissions, and
scholarships

Unequal Results

Score distributions can
vary depending on

booklet assignment

Mostly
Standardized
Everyone gets the
same items at the

same time, but one of
four booklets with

randomized item order

Second largest exam of
its kind. 3.4 million

students took ENEM in
2022

Especially Bad in 2014
ENEM Math score distributions were different by booklet

- Data from 6 million test takers in 2014
- Four colored booklets are assigned

randomly within classrooms, so score
distributions should be identical in
expectation

- Difference in mean score between blue
and grey booklet of 11.3 points

Mean Score Differences Undersell Problem
Position effects results in the misclassification of potentially thousands of students

Equating Solves
ENEMʼs Problem

ENEM is a Test Case
The real application is computerized and adaptive testing

Position Effects
are Identified

The administration
and design of ENEM
plausibly attributes
score differences to

position effects

Data Generating
Process Unknown

ENEM is real world
data and the exact DGP

by which position
effects manifest here is

unknowable

Position Effects
Have Impact

When position effects
exist but are ignored,

they can have material
consequences for test

takers

If all you care about is
misclassification, this

model is overkill

Position Sensitive Model Aligns Distributions
Misclassification is minimized

Comparison of Early and Late Item Parameters
Item-side position effects are not uniformly in the same direction

Heterogeneity in Position Effects
Naïve approaches to estimating item-level position effects tell a similar story

Magnitudes of Position Effects as Expected
Both position sensitive and naïve approaches agree on item-level effects

Self-Equating

Conclusions and Implications
Model properties are robust to many situations where position effects may be at play

Interpretable
Parameters

Differences in item
difficulties reflect
observed position

effects

Investigative
Value

Useful for adaptive and
computerized

scenarios when item
position varies but
effects may not be
cleanly identified

Safe for General
Use

In simulation, model
does not overfit and find

non-existent position
effects or spread item

parameters with
insufficient information

Automatically
produces scores

individually adjusted
for position effects

Thank you!

Email: klint.kanopka@nyu.edu
X (RIP Twitter): @KlintKanopka
Bluesky: @klint.bsky.social

