Skip to contents

Simulation Function

The core of any individual simulation.

meow()
Conducts a full CAT simulation.

Data Loaders

Load existing or simulate new data for use in a meow simulation.

data_existing()
Load data from existing files
data_simple_1pl()
A default data generation function that simulates normally distributed respondent abilities and item difficulties

Selection Functions

Included item selection algorithms.

select_max_dist()
Item selection function based on network distance criterion.
select_max_dist_enhanced()
Enhanced network-based item selection with configurable edge weights
select_max_info()
Item selection function that delivers the the remaining item with the highest information.
select_random()
Item selection function that delivers an item an item drawn at random from the item bank to each respondent.
select_sequential()
Item selection function that delivers the next item by item id number, simulating a fixed test form.

Parameter Update Functions

Included parameter update functions. Note that some only operate on person parameters, while others simultaneously update person and item parameters.

update_maths_garden()
Elo-style updates of person and item parameters
update_prowise_learn()
Elo-style updates of person and item parameters
update_theta_mle()
Updated person parameters based on MLE estimates

Utilities

Additional helper functions.

construct_adj_mat()
Constructs an item pool adjacency matrix.
edge_weight_inverse() edge_weight_negative_log() edge_weight_linear() edge_weight_power() edge_weight_exponential()
Alternative edge weight functions for network-based item selection